
1. Standardization of NaOH Solution

At the equivalence point: Moles of KHP = Moles of NaOH

Known:Mass of KHP (g)Volume of NaOH used in titration (ml)

To be determined: Molarity of NaOH (mole/L)

Calculations: 1. Moles KHP = $\frac{\text{g of KHP}}{\text{MW}(\text{KHP})}$

2. Moles NaOH = Moles KHP

3.
$$M_{\text{NaOH}} = \frac{\text{Moles NaOH}}{V_{\text{NaOH}} (L)}$$

2. Determination of the Unknown Acid Concentration

Example:	HCl +	NaOH →	NaCl +	H_2O
----------	-------	--------	--------	--------

At the equivalence point: Moles HCl = Moles NaOH

Known:Molarity of NaOH from Part 1 (mole/L)Volume of NaOH used in titration (ml)Volume of the unknown acid (ml)

To be determined: Molarity of HCl (mole/L)

Calculations: 1. Moles NaOH = M_{NaOH} (mole / L) × V_{NaOH} (L)

2. Moles HCl = Moles NaOH (this equation will be different for H_2SO_4)

3.
$$M_{HCl} = \frac{Moles HCl}{V_{HCl} (L)}$$

3. Determination of an Acid Content of a Fruit Juice

 $C_3H_5O(COOH)_3 \ + \ 3 \ NaOH \ \rightarrow \ C_3H_5O(COO)_3Na_3 + 3 \ H_2O$

At the equivalence point: Moles $C_3H_5O(COOH)_3 = \frac{1}{3} \times Moles NaOH$

Known:Molarity of NaOH from Part 1 (mole/L)Volume of NaOH used in titration (ml)Volume of the juice sample (ml)

To be determined: $g \text{ of } C_3H_5O(COOH)_3/100 \text{ g of juice}$

Calculations: 1. Moles NaOH = M_{NaOH} (mole / L) × V_{NaOH} (L)

- 2. Moles $C_3H_5O(COOH)_3 = \frac{1}{3} \times Moles NaOH$
- 3. Mass (g) of $C_3H_5O(COOH)_3 = Moles C_3H_5O(COOH)_3 \times MW$ (g/mole)
- 4. Mass (g) $C_3H_5O(COOH)_3$ per 100 g juice = $\frac{Mass (g) C_3H_5O(COOH)_3 \times 100 \text{ ml}}{V_{\text{juice}} (\text{ml})}$